Tetrahedron Letters, Vol.26, No.3, pp 297-300, 1985 Printed in Great Britain

0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

THE MECHANISM OF N-ALKYLATION OF WEAK N-H-ACIDS BY PHASE TRANSFER CATALYSIS¹

Eckehard V. Dehmlow and Rainer Thieser Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25 D-4800 Bielefeld 1, West Germany and

Hayder Ali Zahalka and Yoel Sasson

The Casali Institute of Applied Chemistry, Hebrew University of Jerusalem Jerusalem 91904, Israel

<u>Abstract</u>: The alkylation of aromatic amines in the presence of inorganic bases is accelerated by a PT catalyst <u>even</u> if $KHCO_3$ is the base. $ArNR^{\theta}$ ions seem not to be involved. A novel type of mechanism for a PTC process is proposed.

Phase transfer catalysis (PTC) is a very effective method for the N-alkylation of activated compounds such as carboxamides, phosphon- and sulfonamides, and numerous heterocycles in the presence of a base and a quaternary ammonium salt catalyst [review:ref.²]. This is in line with the known fact that compounds up to a pK_a value of 20-24 can be alkylated in the presence of caustic soda and a PT catalyst. Surprisingly,however, further reports have accumulated on the acceleration of aromatic amine alkylations by a PT catalyst in the presence of aqueous or powdered alkali metal hydroxides³. A mechanism involving deprotonation of N-H bonds is assumed tacitly or explicitly inspite of the pK_a (aniline) = 27 and the fact that even the known $NEt_4^{\oplus 0}NPh_2$ is decomposed by traces of water⁴.

We have verified first the accelerating effect of a catalyst on aromatic amine alkylations in the presence of powdered NaOH (Table 1). It is apparent that PTC increases the rates by a factor of approximately 3 to 4. The various catalysts do not differ much in activity. With aliphatic amines, little or no increase in alkylation rates was found under various PTC conditions.

Further experimentation (Table 2) and literature search revealed these facts : (1) The alkylation is accelerated moderately by the presence of an onium salt even in the absence of an inorganic base. Catalysis⁵ and autocatal-

297

Table 1. PTC Alkylations of Anilines (0.04 mole amine, 0.04 mole ethyl bromide, 0.001 mole catalyst, 0.04 mole crushed NaOH, 2h at 40°C in a sealed tube)

	8 C	onversion ^{b)}	<pre>% Yield (G.C. Analysis)</pre>		
Amine	Catalyst ^{a)}		N-Alkylation	N,N-Dialkylation	
Aniline	PBu ₄ Br	80	48	16	
	none	32	24	4	
	Aliquat 336	66	44	11	
	TEBA	95	51	22	
	NBu ₄ HSO ₄	87	45	16	
	NBu ₄ Br	89	49	20	
	NHexABr	72	44	14	
4-Toluidine	NBu ₄ HSO ₄	77	47	15	
	none	16	12	2	
4-Anisidine	NBu ₄ HSO ₄	76	46	14	
	none	25	19	3	
2-Nitroaniline	NBu ₄ HSO ₄	42	42		
	none		traces		

a) TEBA = PhCH₂NEt₃Cl; Aliquat 336 = technic. $(C_8H_{17})_3NMeCl;$ b) Based on EtBr

Table 2. Influence of Base and Catalyst Presence on the Alkylation of N-Methylaniline (10 mmole aniline, 10 mmole hexyl bromide, 0.25 mmole catalyst in 10 ml toluene, 100°C, 15.5h)

				% Yield		
	I	nmole	with	without		
Inorganic Base	Catalyst	Base	Catalyst	Catalyst		
powdered KOH	NBu ₄ Cl	40	44	13		
50% aq. NaOH	NBudCl	100	70	12		
50% aq. NaOH	NBu ₄ Cl	11	68	11		
10% aq. NaOH	NBu _A Cl	20	44	12		
solid K ₂ CO3	NBu _A Cl	20	63	18		
solid KHCO3	NBu ₄ Cl	20	62	9		
solid KHCO3	NBu ₄ Br	20	60	9		
solid KHCO ₃	$\begin{bmatrix} 18 \end{bmatrix}$ crown-6 + KCl	20	15.5	9		
solid KHCO3	dicyclohexano-	20	14	9		
3	[18] crown-6 + KCl					
solid KHCO ₃	cryptand[222] + KCl	20	50	9		
none			45	35		

ysis⁶ of such processes by amine hydrohalides and by various salts⁶ have been known for long, but no specific explanation of the so called "electrolyte ca-talysis" was offered.

(2) Expectedly, the presence of inorganic bases suppresses the autocatalytic effect of the amine hydrohalide.

(3) A quaternary ammonium salt catalyzes more effectively than an amine hydrohalide.

(4) In the absence of an inorganic base, more and more of the amine is tied up as hydrohalide and the reaction becomes slow. Even weak bases like KHCO_3 increase the rate of alkylation if NBu_4Cl is present. Powdered potassium hydroxide - although the strongest base - gives less yield due to extensive tarring (5) NBu_4Br is almost as effective a catalyst as NBu_4Cl . This is important because bromide ions are liberated in the course of the reaction. Crowns + KCl are not useful, but cryptand [222] plus KCl can be applied as a catalyst¹¹.

These observations rule out the deprotonation of anilines and point towards halide ions as essential catalysts. Only quaternary ammonium cations keep the halide permanently in the organic phase if an inorganic base is present. In nonpolar solvents, halide counterions of catalysts function as bases in eliminations and other processes [review: ref.²], and the formation of ion pair complexes with HX or H_2O_2 have been demonstrated⁷ in dichloromethane and benzene: [NR₄^{\oplus} Cl^{\oplus}..HX], [NR₄^{\oplus} Cl^{\oplus}..HOOH]. The strongly basic and H-bonding properties of KF were reviewed recently⁸, and freeze dried KF accelerates the aniline alkylation at room temperature⁹.

It is reasonable to assume that amines and halide ions form similar hydrogen bonded complexes $[NR_4^{\oplus} X^{\odot} ... H \triangleright NR'Ar]$ in which polarization towards the amide anion occurs without generation of the full negative charge. Precisely this type of intermediate was implicated from a kinetic study of homogeneous nitroaniline acylation¹⁰. The lesser catalytic activity of amine hydrohalides compared to quaternary ammonium halides is explained by such an intermediate without difficulty: The negative charge density at the N of the complexed aniline derivative, $[ArNRH_2^{\oplus} ... X^{\odot} ... HNRAr]$, will be smaller than in the earlier mentioned complex due to the additional H-bonding of the cation.

299

The overall process comprises two steps: (a) reaction of aniline and RX catalyzed by intermediate NR_4X -aniline complexing, and (b) non-catalyzed deprotonation of the formed amine hydrohalide by the inorganic base at the phase boundary. Although the basic ideas assembled here are known, this mechanism is unique and novel among the phase transfer catalysis processes.

<u>Acknowledgement</u>: This research was partially supported in both countries by Deutsche Forschungsgemeinschaft.

References and Notes:

¹Applications of Phase Transfer Catalysis, Part 30. Communication 29: E.V. Dehmlow and J. Wilkenloh, J. Chem. Res. <u>1984</u>, in press.

²E.V.Dehmlow,S.S.Dehmlow, "Phase Transfer Catalysis", 2nd,enlarged Ed.1983, Verlag Chemie, Weinheim, Deerfield Beach, Basel.

³In addition to the literature reviewed in ref.² these new papers have appeared: R.S.Davidson, A.M.Patel, A.Safdar, D.Thornthwaite, <u>Tetrahedron Lett</u>. <u>1983</u>, 5907; R.S.Davidson, A.M.Patel, A.Safdar, <u>J.Chem.Res</u>. (S)<u>1984</u>, 88; P. Scrimin, F.D'Angeli, G.Cavicchioni, <u>Synthesis</u> <u>1982</u>, 1092; S.Julia, A.Ginebreda, M.L.Bernabe, M.Grau, Afinidad <u>39</u>, 275 (1982).

⁴W.L.Jolly, <u>J.Am.Chem.Soc.</u> <u>77</u>, 4958 (1955).

⁵Germ.Pat. 704300 (1938) to I.G.Farben, inventor: M.Lange; <u>Chem.Zentralbl</u>. <u>1941</u> I, 3444.

⁶W.F.Roper, R.C.Anderson, G.W.Watt, <u>J.Am.Chem.Soc</u>. <u>67</u>, 2269(1945) and earlier papers.

⁷E.V.Dehmlow, M.Slopianka, <u>Chem. Ber</u>. <u>112</u>, 2768 (1979).

⁸J.H.Clark, Chem.Rev. <u>80</u>, 429 (1980).

⁹N.Ishikawa, T.Kitazume, N.Nakabayashi, <u>Chem. Lett.</u> <u>1980</u>, 1089.

¹⁰M.K.Turovskaya, G.D.Titskii, L.M.Litvinenko, V.V.Zamashchikov, <u>Zh.Org.Khim.</u> <u>18</u>,2127 (1982); Engl. transl.p. 1874.

¹¹KCl was used in excess over crowns or cryptand. The poor performance of the crowns could not be improved by the use of KCl complexes that were preformed independently. It remains open to the question whether the [222] catalysis is simply due to its amine character which could result in quaternization under the reaction conditions.

(Received in Germany 17 August 1984)

300